Missing Data Treatment and Data Fusion toward Travel Time Estimation for Atis

نویسندگان

  • Yuh-Horng WEN
  • Tsu-Tian LEE
  • Hsun-Jung CHO
چکیده

This study develops a travel time estimation process by integrating a missing data treatment and data-fusion-based approaches. In missing data treatment, this study develops a grey time-series model and a grey-theory-based pseudo-nearest-neighbor method to recover, respectively, temporal and spatial missing values in traffic detector data sets. Both spatial and temporal patterns of traffic data are also considered in travel time data fusion. In travel time data fusion, this study presents a speed-based link travel time extrapolation model for analytical travel time estimation and further develops a recurrent neural network (RNN) integrated with grey models for real-time travel time estimation. In the case study, field data from the national freeway no.1 in Taiwan is used as a case study for testing the proposed models. Study results showed that the grey-theory-based missing data treatment models were accurate for recovering missing values. The grey-based RNN models were capable of accurately predicting travel times. Consequently, the results of this study indicated that the proposed missing data treatment and data fusion approaches can ensure the accuracy of travel time estimation with incomplete data sets, and are therefore suited to implementation for ATIS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Reliable Travel Time Prediction System with Sparsely Distributed Detectors

Title of Document: A RELIABLE TRAVEL TIME PREDICTION SYSTEM WITH SPARSELY DISTRIBUTED DETECTORS Nan Zou Directed By: Dr. Gang-Len Chang, Professor Department of Civil and Environmental Engineering Due to the increasing congestion in most urban networks, providing reliable trip times to commuters has emerged as one of the most critical challenges for all existing Advanced Traffic Information Sys...

متن کامل

Urban Travel Time Estimation Using Real Time Bus Tracking Data

In this paper, the concept of using bus probes for urban street travel time estimation in the advanced traveler information system (ATIS) application is investigated through both a thorough literature review and a case study in downtown Chicago using the Chicago Transit Authority (CTA)'s buses. First, existing bus probes studies are reviewed and compared with respect to the research objectives,...

متن کامل

Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data

On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times ar...

متن کامل

On-Time Reliability Impacts of Advanced Traveler Information Services (ATIS): Washington, DC Case Study

Internet-based Advanced Traveler Information Services (ATIS) provide the urban traveler with estimated travel times based on current roadway congestion. Survey research indicates that the vast majority of current ATIS users are satisfied consumers who feel they save time by utilizing these services on a regular basis. However, in numerous field experiments and simulation studies, ATIS users exp...

متن کامل

Performance evaluation of different estimation methods for missing rainfall data

There are numerous methods to estimate missing values of which some are used depending on the data type and regional climatic characteristics. In this research, part of the monthly precipitation data in Sarab synoptic station, east Azerbaijan province, Iran was randomly considered missing values. In order to study the effectiveness of various methods to estimate missing data, by seven classic s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005